US ERA ARCHIVE DOCUMENT

Design of an Oil Spill Model Using Modern Software Design Principles & Associated Field Studies

Jim Weaver¹, Michel Boufadel², Bassem Naba², Karl Castleton^{1,3}

 ¹U.S. Environmental Protection Agency, Office of Research and Development, Athens, Georgia
²Temple University, Philadelphia, Pennsylvania
³Now at Battelle Pacific Northwest Labs

Outline

- Model Design--Software Concepts
- 2001-2002 Field Studies at the Lock Lake tidal marsh
 - Significant Flow and Transport Features
 - Preliminary Simulations of Lock Lake
- Conclusions

Oil Spill

Object Oriented Structure

- Natural alignment with Problem Definition
 - Polymorphism: Slicks vs. droplets
 - Inheritance: Multiple droplets, e.g.
- Vast improvement over serial languages:
 - Flexibility
 - maintainability
 - testing
 - QA/QC
 - Cost is in Additional Design Time

EPA's Research Object-Oriented Oil Spill Model ----ERO³S

Main Screen

Input

Outputs

Lock Lake Tidal Marsh Study

- Gain understanding from studying field site
 - Component of model design
 - We have observed phenomena we could not have guessed
 - What data are critical for model-based studies?
- Test site for hypothesis testing
 - What would be the impact of an oil spill? Emulsified fuel spill?
- Parameter estimation from field studies
 - Measure dispersion coefficients

Lock Lake Tidal Marsh

- Small tidal marsh on south shore of Long Island
- Cooperative study between
 - US EPA, NYSDEC, Temple University
- Study transport in a setting influenced by
 - Tides, ground water discharge, freshwater inflows

Lock Lake

Stilling Well Data

- Do predicted and observed tides match?
 - (Sandy Hook, NJ or Montauk Point, NY + time lag and height correction?)
- How much does response lag in the marsh?
 - Approximately 20 minutes at Dunton Lake
 - Is this data reproduced by the model?

Marsh Water Levels (9-2001)

1.2 East Inlet Dunton Lake 8.0 Yacht Street 0.6 Water Level (ft) 0.4 0.2 0 -0.2^{9/1}8/01 9/24/01 9/25/01 -0.4 -0.6 -0.8 **Date**

Normalized Water Levels

Marsh Water Levels (10-2001)

Aquifer Connection

Dunton Lake Dam Salinity Profile

Temperature, D.O. or Electrical Conductivity

Channel Cross Section No. 4

East Inlet Salinity & Temperature

Conclusions

- Lock Lake field study provides insight into transport behavior and contributes to model design
 - Preliminary Lock Lake data indicate
 - maximum propagation distance into marsh
 - mixing with fresh water
 - Inverted salinity profiles indicate fresh water inflows
 - Spring with abrupt salinity transition

Conclusions

- Preliminary model results correspond to observations
 - limited propagation distance into marsh
 - sensitivity analysis indicates topography controls flow
- Continuing work to link oil slick model to the flow model

2002 Field Work

- Long term logging of water levels, temperature and salinity in marsh
- Tracer study to generate testing data
 - Direct estimates of dispersion coefficients
 - Test data for water level model
 - Verification (or not) of transport hypothesis based on inlet data

Thanks

New York State Department of Environmental Conservation

Joe Haas

JNM Environmental of

Patchogue, New York

Dave Reardon

Brian Brownworth

John Toscano

Rich Kampf

Temple University

L.T.

US EPA

Dave Brown Pam Gunter

Special thanks to Brandy Manders, US EPA

